![]() |
MTH623 ASSIGNMENT NO. 1 FALL 2022 (PART-2) |
KINDLY, DON’T COPY PASTE |
MTH623 ASSIGNMENT NO. 1 FALL 2022 (PART-2) || 100% RIGHT SOLUTION || TENSOR ANALYSIS AND ITS APLICATIONS || BY VuTech
SEND WHATSAPP OR E-MAIL FOR ANY QUERY
0325-6644800
kamranhameedvu@gmail.com
Assignment # 01 MTH623 (Fall 2022)
Maximum Marks: 20
Due Date: 24 Nov, 2022
INSTRUCTIONS
Please read the following instructions before attempting the solution of this assignment:
• To solve this assignment, you should have good command over 1-24 lessons.
• Try to get the concepts, consolidate your concepts and ideas from these questions which you learn in these lectures. You should concern the recommended books for clarification of concepts.
• Upload assignments properly through LMS. No Assignment will be accepted through email.
• Write your ID on the top of your solution file.
• Do not use colored backgrounds in your solution files.
• Use Math Type or Equation Editor etc. for mathematical symbols and equations.
• You should remember that if we found the solution files of some students are same then we will reward zero marks to all those students. Therefore, try to make solution by yourself and protect your work from other students, otherwise you and the student who send same solution file as you will be given zero marks.
• Avoid copying the solution from book (or internet); you must solve the assignment yourself.
• Also remember that you are supposed to submit your assignment in Word format any other like scan images, HTML etc. will not be accepted and we will give zero marks correspond to these assignments.
SEND WHATSAPP OR E-MAIL FOR ANY QUERY
0325-6644800
kamranhameedvu@gmail.com
Question # 2:
The eight vertices of a rectangular prism are as follows:
`\V_1 = \left(0,0,0\right), V_2 = \left(1,0,0\right), V_3 = \left(1,2,0\right), V_4 = \left(0,2,0\right)`
`\V_5 = \left(0,0,3\right), V_6 = \left(1,0,3\right), V_7 = \left(1,2,3\right), V_8 = \left(0,2,3\right)`
Find the coordinates of the vertices after the prism is rotated counterclockwise about the z-axis through `\theta = 60^\circ`.
Solution:
Here
`\theta = 60`
and
The prism is
rotated counterclockwise about the z -axis
then
now we first
find `V_1^ - = (x_1^ - ,y_1^ - ,z_1^ - )`
`Here
V_1 = \left(0,0,0\right)`
then
`V_1^ - =
(0,0,0)`
Now `V_2^
- = = (x_2^ - ,y_2^ - ,z_2^ - )`
here
`V_2 = \left(1,0,0\right)`
`x_2 = 1, y_2 = 0,
and z_2 = 0`
`x_2^ - =
x_2\cos 60 - y_2\sin 60 = (1)\left(\frac{1}{2}\right) - (0)\left(\frac{\sqrt
3}{2}\right) = \frac{1}{2}`
`y_2^ - =
x_2\sin 60 + y_2\cos 60 = (1)\left(\frac{\sqrt 3 }{2}\right) +
(0)\left(\frac{1}{2}\right) = \frac{\sqrt 3 }{2}`
`z_2^ - =
z_2 = 0`
So,
`V_2^ - =
\left(\frac{1}{2},\frac{\sqrt 3 }{2},0\right)`
Now
`V_3^ - =
(x_3^ - ,y_3^ - ,z_3^ - )`
here
`V_3 =
\left(1,2,0\right)`
`x_3 = 1, y_3 =
2, z_3 = 0`
`x_3^ - =
x_3\cos 60 - y_3\sin 60 = (1)\left(\frac{1}{2} \right) - (2)\left(\frac{\sqrt
3}{2}\right) = \frac{1}{2}- \sqrt 3`
`y_3^ - =
x_3\sin60 + y_3\cos 60 = (1)\left(\frac{\sqrt 3}{2}\right) + (2)\left(\frac{1}{2}\right)
= \frac{\sqrt 3 }{2} - 1`
`z_3^ - =
z_3 = 0`
So,
`V_3^ - =
\left(\frac{1}{2} - \sqrt 3 ,\frac{\sqrt 3}{2} - 1,0)`
Now
`V_4^ - =
(x_4^ - ,y_4^ - ,z_4^ - )`
`V_4 =
\left(0,2,0\right)`
`x_4 = 0, y_4 =
2, z_4 = 0`
`x_4^ - =
x_4\cos 60 - y_4\sin 60 = (0)\left(\frac{1}{2}\right) - (2)\left(\frac{\sqrt
3}{2}\right) = - \sqrt 3`
`y_4^ - =
x_4\sin 60 + y_4\cos 60 = (0)\left(\frac{\sqrt 3}{2} \right) +
(2)\left(\frac{1}{2}\right) = - 1`
`z_4^ - =
z_4 = 0`
So,
`V_4^ - =
\left(- \sqrt 3 , - 1,0\right)`
Now `V_5^
- = (x_5^ - ,y_5^ - ,z_5^ - )`
here
`V_5 =
\left(0,0,3\right)`
`x_5 = 0, y_5 =
0, z_5 = 3`
`x_5^ - =
x_5\cos 60 - y_5\sin 60 = (0)\left(\frac{1}{2} \right) - (0)\left(\frac{\sqrt
3}{2}\right) = 0`
`y_5^ - =
x_5\sin 60 + y_5\cos 60 = (0)\left(\frac{\sqrt 3}{2} \right) +
(0)\left(\frac{1}{2}\right) = 0`
`z_5^ - =
z_5 = 3`
So,
`V_5^ - =
\left(0,0,3\right)`
Now
`V_6^ - =
(x_6^ - ,y_6^ - ,z_6^ - )`
here `V_6
= \left(1,0,3\right)`
`x_6 = 1, y_6 =
0, z_6 = 3`
`x_6^ - =
x_6\cos 60 - y_6\sin 60 = (1)\left(\frac{1}{2} \right) - (0)\left(\frac{\sqrt
3}{2}\right) = \frac{1}{2}`
`y_6^ - =
x_6\sin 60 + y_6\cos 60 = (1)\left(\frac{\sqrt 3}{2}\right) +
(0)\left(\frac{1}{2}\right) = \frac{\sqrt 3}{2}`
`z_6^ - =
z_6 = 3`
So,
`V_6^ - =
\left(\frac{1}{2},\frac{\sqrt 3}{2},3\right)`
Now `V_7^
- = (x_7^ - ,y_7^ - ,z_7^ - )`
here `V_7 =
\left(1,2,3\right)`
`x_7 = 1, y_7 =
2, z_7 = 3`
`x_7^ - =
x_7\cos 60 - x_7\sin 60 = (1)\left(\frac{1}{2}\right) - (2)\left(\frac{\sqrt
3}{2} \right) = \frac{1}{2} - \sqrt 3`
`y_7^ - =
x_7\sin 60 + x_7\cos 60 = (1)\left(\frac{\sqrt 3}{2}\right) +
(2)\left(\frac{1}{2}\right) = \frac{\sqrt 3 }{2} - 1`
`z_7^ - =
z_7 = 3`
So,
`V_7^ - =
\left(\frac{1}{2} - \sqrt 3 ,\frac{\sqrt 3}{2} - ,3)`
Now `V_8^ -
= (x_8^ - ,y_8^ - ,z_8^ - )`
`here V_8
= \left(0,2,3\right)`
`x_8 = 0,
y_8 = 2, and z_8 = 3`
`x_8^ - =
x_8\cos 60 - y_8\sin 60 = (0)\left(\frac{1}{2}\right) - (2)\left(\frac{\sqrt
3}{2}\right) = - \sqrt 3`
`y_8^ - =
x_8\sin 60 + y_8\cos 60 = (0)\left(\frac{\sqrt 3}{2}\right) + (2)\left(
\frac{1}{2}\right) = - 1`
`z_8^ - =
z_8 = 3`
So,
`V_8^ - =
\left( - \sqrt 3 , - 1,3\right)`
\]
Hence,
The coordinates
of the vertices after the prism are rotated counterclockwise about the z-axis
through `\theta = 60^\circ` are
`V_1^ - =
(0,0,0), V_2^ - = \left(\frac{1}{2},\frac{\sqrt 3}{2},0\right),`
`V_3^ - =
\left(\frac{1}{2} - \sqrt 3 ,\frac{\sqrt 3 }{2} - 1,0\right), V_4^ - =
\left(- \sqrt 3 , - 1,0\right),`
`V_5^ - =
\left(0,0,3\right), V_6^ - = \left(\frac{1}{2},\frac{\sqrt
3}{2},3\right), `
`V_7^ - = \left(\frac{1}{2} - \sqrt 3 ,\frac{\sqrt 3}{2} - ,3\right), V_8^ - = \left(- \sqrt 3 , - 1,3\right)`
Visit Website For More Solutions
www.vutechofficial.blogspot.com
KINDLY, DON’T COPY PASTE
SUBSCRIBE, SHARE, LIKE AND COMMENTS FOR MORE UPDATES
SEND WHATSAPP OR E-MAIL FOR ANY QUERY
0325-6644800
kamranhameedvu@gmail.com