Pages

MTH633 ASSIGNMENT NO. 1 FALL 2022 || 100% RIGHT SOLUTION || GROUP THEORY || BY VuTech

 

MTH633 ASSIGNMENT NO. 1 FALL 2022 

KINDLY, DON’T COPY PASTE

MTH633 ASSIGNMENT NO. 1 FALL 2022 || 100% RIGHT SOLUTION || GROUP THEORY|| BY VuTech


SEND WHATSAPP OR E-MAIL FOR ANY QUERY

0325-6644800

kamranhameedvu@gmail.com

Assignment No.  1            MTH633 (Fall 2022)

 Total Marks: 5                                                                                      Due Date: November 25, 2022

 


DON’T MISS THESE: Important instructions before attempting the solution of this assignment:

      To solve this assignment, you should have good command over 1-8 lectures (modules 1-33).

      Upload assignments properly through LMS, No Assignment will be accepted through email.

      Write your ID on the top of your solution file.

  • Don’t use colorful back grounds in your solution files.
  • Use Math Type or Equation Editor etc. for mathematical symbols if needed.
  • You should remember that if the solution files of some students are found same (copied) then we will reward zero marks to all those students.
  • Make solution by yourself and protect your work from other students, otherwise both original and copied assignments will be awarded zero marks.
  • Also remember that you are supposed to submit your assignment in Word format. Any other format like scanned images etc. will not be accepted and be awarded zero marks

 SEND WHATSAPP OR E-MAIL FOR ANY QUERY

0325-6644800

kamranhameedvu@gmail.com

Q1:  Show that set of integers Z is not a group under the binary operation multiplication.

Justify each of the group properties that holds or not.                                          Marks = 5

Solution:

Here,

         The set of integers Z is not a group under the binary operation multiplication.

        Now, we have to justify each of the group properties that holds or not.

        Lets suppose a = 1, b = 2 and c = 3 where  `a, b \in Z` 

        So,

  •  Commutative Property

            First, we discuss commutative property `\forall  `a,b \in Z`

                            a * b = 1 * 2 = 2 = 2 * 1 = b * a

            So, the commutative property is satisfied.

  •  Associative Property

            Now, we discuss associative property `\forall a,b,c \in Z`

                            `a * (b*c) = 1 * (2*3)  = 6 = (1*2) * 3 = (a*b)*c`

            So, the associative property is satisfied.

  •  Identity Property

            Now, we discuss identity property `\forall a \in Z`

                            `e*a = 1 * 1= 1 = 1 * 1 = a * e    where  \e = 1 \in Z`

            So, the identity property is satisfied.

  •  Inverse Property

            Now, we discuss inverse property `\forall b \in Z`

                            `b = \frac{1}{b} \to 2 \ne\frac{1}{2}`                              

            So, the inverse property is not satisfied.

            So, its prove

                        The set of integers Z is not a group under the binary operation multiplication.


 KINDLY, DON’T COPY PASTE

SUBSCRIBE, SHARE, LIKE AND COMMENTS FOR MORE UPDATES

SEND WHATSAPP OR E-MAIL FOR ANY QUERY

0325-6644800

kamranhameedvu@gmail.com