![]() |
MTH401 ASSIGNMENT NO. 1 FALL 2022 |
KINDLY, DON’T COPY PASTE
MTH401 ASSIGNMENT NO. 1 FALL 2022 || 100% RIGHT SOLUTION || DIFFERENTIAL EQUATIONS || BY VuTech
Visit Website For More Solutions
www.vutechofficial.blogspot.com
SEND WHATSAPP OR E-MAIL FOR ANY QUERY
0325-6644800
kamranhameedvu@gmail.com
Assignment # 1 MTH401 (Fall 2022)
Total Marks: 10 Due Date: December 5, 2022.
DON’T
MISS THESE: Important
instructions before attempting the
solution of this assignment:
• To
solve this assignment, you should have good command over 01 - 10 lectures.
• Upload assignments properly through LMS, No Assignment will be
accepted through email.
• Write your ID on the top of your solution
file.
- Don’t use
colorful back grounds in your solution files.
- Use Math
Type or Equation Editor etc for mathematical symbols if needed.
- You
should remember that if
we found the solution files of some students are same then we will reward
zero marks to all those students.
- Make solution by
yourself and protect your work from other students, otherwise you and the
student who send same solution file as you will be given zero marks.
- Also remember that
you are supposed to submit your assignment in Word format any other like
scan images etc will not be accepted and we will give zero marks
correspond to these assignments.
SEND WHATSAPP OR E-MAIL FOR ANY QUERY
0325-6644800
kamranhameedvu@gmail.com
Visit Website For More Solutions
www.vutechofficial.blogspot.com
QUESTION 1:
Solve the Differential
equation
`(3x^2 + 9xy + 5y^2)dx
- (6x^2 + 4xy)dy = 0); y(2) = -6`
SOLUTION:
`(3x^2 + 9xy + 5y^2)dx
- (6x^2 + 4xy)dy = 0`
`(3x^2 + 9xy + 5y^2)dx
= (6x^2 + 4xy)dy`
`\frac{(3x^2 + 9xy +
5y^2)}{(6x^2 + 4xy)} = \frac{dy}{dx}`
`\frac{x^2(3 +
9(\frac{y}{x}) + 5(\frac{y}{x})^2)}{x^2(6 + 4(\frac{y}{x}))} = \frac{dy}{dx}`
`\frac{3 +
9(\frac{y}{x}) + 5(\frac{y}{x})^2}{6 + 4(\frac{y}{x})} = \frac{dy}{dx}`
`\frac{dy}{dx} =
\frac{3 + 9(\frac{y}{x}) + 5(\frac{y}{x})^2}{6 + 4(\frac{y}{x})}
- - - - - - -
(1)`
Now
`y = vx`
`v = \frac{y}{x}`
Put the value of
`\frac{dy}{dx},` in (1)
`v + x\frac{dv}{dx} =
\frac{3 + 9v + 5v^2}{6 + 4v}`
`x\frac{dv}{dx} =
\frac{3 + 9v + 5v^2}{6 + 4v} - v`
`x\frac{dv}{dx} =
\frac{3 + 9v + 5v^2 - v(6 + 4v)}{6 + 4v}`
`x\frac{dv}{dx} =
\frac{3 + 9v + 5v^2 - 6v - 4v^2}{6 + 4v}`
`x\frac{dv}{dx} =
\frac{v^2 + 3v + 3}{6 + 4v}`
`\frac{1}{x}\frac{dx}{dv}
= \frac{6 + 4v}{v^2 + 3v + 3}`
`\frac{dx}{x} =
(\frac{6 + 4v}{v^2 + 3v + 3})dv`
Apply Integral on both
sides
`\int \frac{dx}{x} =
\int (\frac{6 + 4v}{v^2 + 3v + 3})dv `
`\int \frac{dx}{x} =
\int (\frac{2(3 + 2v)}{v^2 + 3v + 3})dv`
`\int \frac{dx}{x} =
\int 2(\frac{3 + 2v}{v^2 + 3v + 3})dv `
`\ln |x| + \ln |c| =
2\ln |(v^2 + 3v + 3)|`
`\ln |xc| = \ln |(v^2
+ 3v + 3)^2|`
`xc = (v^2 + 3v +
3)^2`
By putting `v =
\frac{y}{x}`
`xc = (\frac{y}{x})^2}
+ 3\frac{y}{x} + 3)^2`
`xc = (\frac{y}{x^2}^2
+ 3\frac{y}{x} + 3)^2`
By taking L.C.M
`xc = \frac{(y^2 + 3xy
+ 3x^2)^2}{(x^2)^2}`
`xc = \frac{(y^2 + 3xy
+ 3x^2)^2}{x^4}`
`x^4.xc = (y^2 + 3xy +
3x^2)^2`
`x^{4 + 1}c = (y^2 +
3xy + 3x^2)^2`
`x^5c = (y^2 + 3xy +
3x^2)^2`
By Putting y(2) = - 6
`2^5c = (( - 6)^2 +
3(2)( - 6) + 3(2^2))^2`
`32c = (36 - 36 +
12)^2`
`32c = (12)^2`
`32c = 144`
`c = \frac{144}{32}`
`c = \frac{9}{2}`
Now put `c =
\frac{9}{2}` in this equation `x^5c = (y^2 + 3xy + 3x^2)^2`
`x^5\frac{9}{2} = (y^2
+ 3xy + 3x^2)^2`
`\frac{9x^5}{2} = (y^2
+ 3xy + 3x^2)^2`
KINDLY, DON’T COPY PASTE
SUBSCRIBE, SHARE, LIKE AND COMMENTS FOR MORE UPDATES
SEND WHATSAPP OR E-MAIL FOR ANY QUERY
0325-6644800
kamranhameedvu@gmail.com
Visit Website For More Solutions
www.vutechofficial.blogspot.com