Pages

MTH401 ASSIGNMENT NO. 1 FALL 2022 || 100% RIGHT SOLUTION || DIFFERENTIAL EQUATIONS || BY VuTech

MTH401 ASSIGNMENT NO. 1 FALL 2022 || 100% RIGHT SOLUTION || DIFFERENTIAL EQUATIONS || BY VuTech

MTH401 ASSIGNMENT NO. 1 FALL 2022

 KINDLY, DON’T COPY PASTE 

MTH401 ASSIGNMENT NO. 1 FALL 2022 || 100% RIGHT SOLUTION || DIFFERENTIAL EQUATIONS || BY VuTech

Visit Website For More Solutions

www.vutechofficial.blogspot.com

SEND WHATSAPP OR E-MAIL FOR ANY QUERY

0325-6644800

kamranhameedvu@gmail.com

Assignment # 1                                      MTH401 (Fall 2022)

 Total Marks: 10                                                                               Due Date: December 5, 2022.

 


DON’T MISS THESE: Important instructions before attempting the solution of this assignment:

 •     To solve this assignment, you should have good command over 01 - 10 lectures.

•      Upload assignments properly through LMS, No Assignment will be accepted through email.

 •     Write your ID on the top of your solution file.

  • Don’t use colorful back grounds in your solution files.
  • Use Math Type or Equation Editor etc for mathematical symbols if needed.
  • You should remember that if we found the solution files of some students are same then we will reward zero marks to all those students.
  • Make solution by yourself and protect your work from other students, otherwise you and the student who send same solution file as you will be given zero marks.
  • Also remember that you are supposed to submit your assignment in Word format any other like scan images etc will not be accepted and we will give zero marks correspond to these assignments.

 

SEND WHATSAPP OR E-MAIL FOR ANY QUERY

0325-6644800

kamranhameedvu@gmail.com 

Visit Website For More Solutions

www.vutechofficial.blogspot.com 


QUESTION 1: 

Solve the Differential equation

`(3x^2 + 9xy + 5y^2)dx - (6x^2 + 4xy)dy = 0); y(2) = -6` 

SOLUTION:

`(3x^2 + 9xy + 5y^2)dx - (6x^2 + 4xy)dy = 0`

`(3x^2 + 9xy + 5y^2)dx = (6x^2 + 4xy)dy`

`\frac{(3x^2 + 9xy + 5y^2)}{(6x^2 + 4xy)} = \frac{dy}{dx}`

`\frac{x^2(3 + 9(\frac{y}{x}) + 5(\frac{y}{x})^2)}{x^2(6 + 4(\frac{y}{x}))} = \frac{dy}{dx}`

`\frac{3 + 9(\frac{y}{x}) + 5(\frac{y}{x})^2}{6 + 4(\frac{y}{x})} = \frac{dy}{dx}`

`\frac{dy}{dx} = \frac{3 + 9(\frac{y}{x}) + 5(\frac{y}{x})^2}{6 + 4(\frac{y}{x})}            -  -  -  -  -  -  - (1)`

Now

`y = vx`

`v = \frac{y}{x}`

Put the value of  `\frac{dy}{dx},` in (1)

`v + x\frac{dv}{dx} = \frac{3 + 9v + 5v^2}{6 + 4v}`

`x\frac{dv}{dx} = \frac{3 + 9v + 5v^2}{6 + 4v} - v`

`x\frac{dv}{dx} = \frac{3 + 9v + 5v^2 - v(6 + 4v)}{6 + 4v}`

`x\frac{dv}{dx} = \frac{3 + 9v + 5v^2 - 6v - 4v^2}{6 + 4v}`

`x\frac{dv}{dx} = \frac{v^2 + 3v + 3}{6 + 4v}`

`\frac{1}{x}\frac{dx}{dv} = \frac{6 + 4v}{v^2 + 3v + 3}`

`\frac{dx}{x} = (\frac{6 + 4v}{v^2 + 3v + 3})dv`

Apply Integral on both sides

`\int \frac{dx}{x} = \int (\frac{6 + 4v}{v^2 + 3v + 3})dv `

`\int \frac{dx}{x} = \int (\frac{2(3 + 2v)}{v^2 + 3v + 3})dv`

`\int \frac{dx}{x} = \int 2(\frac{3 + 2v}{v^2 + 3v + 3})dv  `

`\ln |x| + \ln |c| = 2\ln |(v^2 + 3v + 3)|`

`\ln |xc| = \ln |(v^2 + 3v + 3)^2|`

`xc = (v^2 + 3v + 3)^2`

By putting `v = \frac{y}{x}`

`xc = (\frac{y}{x})^2} + 3\frac{y}{x} + 3)^2`

`xc = (\frac{y}{x^2}^2 + 3\frac{y}{x} + 3)^2`

By taking L.C.M

`xc = \frac{(y^2 + 3xy + 3x^2)^2}{(x^2)^2}`

`xc = \frac{(y^2 + 3xy + 3x^2)^2}{x^4}`

`x^4.xc = (y^2 + 3xy + 3x^2)^2`

`x^{4 + 1}c = (y^2 + 3xy + 3x^2)^2`

`x^5c = (y^2 + 3xy + 3x^2)^2`

By Putting y(2) = - 6

 

`2^5c = (( - 6)^2 + 3(2)( - 6) + 3(2^2))^2`

`32c = (36 - 36 + 12)^2`

`32c = (12)^2`

`32c = 144`

`c = \frac{144}{32}`

`c = \frac{9}{2}`

Now put `c = \frac{9}{2}` in this equation `x^5c = (y^2 + 3xy + 3x^2)^2`

`x^5\frac{9}{2} = (y^2 + 3xy + 3x^2)^2`

`\frac{9x^5}{2} = (y^2 + 3xy + 3x^2)^2`

  

KINDLY, DON’T COPY PASTE

SUBSCRIBE, SHARE, LIKE AND COMMENTS FOR MORE UPDATES

SEND WHATSAPP OR E-MAIL FOR ANY QUERY

0325-6644800

kamranhameedvu@gmail.com 

Visit Website For More Solutions

www.vutechofficial.blogspot.com